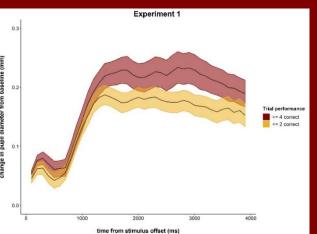
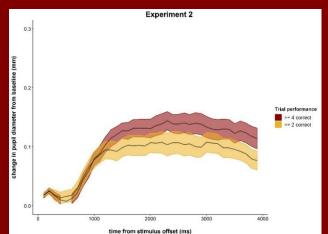
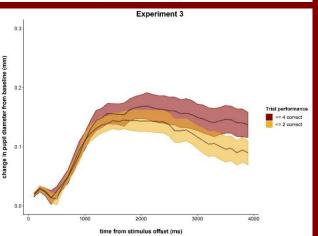


Pupillometry tracks fluctuations in working memory performance


Background & Method


- Recent research has shown that contralateral delay activity (CDA) can track the relative success of working memory maintenance (Adam et al., 2018)
- Research has also shown that the pupil dilates over delay intervals in working memory tasks (Kahneman & Beatty, 1966)
- Can we use pupillometry to track working memory performance on a trial-by-trial basis?
- In Experiments 1 and 2, participants completed 80 trials of a discrete wholereport task, and they were asked to report their attentional state after 8 random trials
- In Experiment 3, participants received the thought probes after 8 random trials and after any trial in which they reported 0 or 1 items correctly
- Pupil diameter continuously recorded throughout the task



Matthew K. Robison¹ & Nash Unsworth²

¹Arizona State University, ²University of Oregon

-			
Predictor	b	<u>t(</u> 102)	р
Pretrial pupil mean Pretrial pupil <u>CoV</u> TEPR mean TEPR <u>CoV</u>	.05 -11.78 .07 03	.85 -3.62 1.10 -1.43	.40 <.001 .27 .16

Regression on mean number correct

Note. <u>CoV</u> = coefficient of variation; TEPR = taskevoked pupillary response.

*Robison, M. K., & Unsworth, N. (In press). Pupillometry tracks fluctuations in working memory performance. *Attention, Perception, & Psychophysics*.

References

Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. *Science*, *154*, 1583 – 1585. Adam, K. C. S., Robison, M. K., & Vogel, E. K. Contralateral delay activity tracks fluctuations in working memory performance. *Journal of Cognitive Neuroscience*, *30*, 1229 – 1240.

Unsworth, N. & Robison, M. K. (2017). A locus coeruleus-norepinephrine account of individual differences in working memory capacity and attention control. *Psychonomic Bulletin & Review, 24,* 1282 – 1311.

Thought probes

1) I am totally focused on the current task, 2) I am thinking about my performance on the task, 3, I am distracted by sights/sounds in my environment, 4) I am intentionally thinking about things unrelated to the task, 5) I am unintentionally thinking about things unrelated to the task, 6) My mind is blank

Responses to thought probes

Response	Catch probe	Standard probe
On-task	.27 (.33)	.36 (.34)
TRI	.26 (.23)	.32 (.27)
ED	.03 (.09)	.01 (.03)
Intent. MW	.05 (.14)	.02 (.06)
Unintent. MW	.20 (.22)	.16 (.18)
Mind-blanking	.18 (.26)	.13 (.27)
Off-task (total)	.47 (.34)	.32 (.32)

Note. TRI = task-related interference, ED = external distraction, Intent. MW = intentional mind-wandering, Unintent. MW = unintentional mind-wandering.

- In all 3 experiments, the pupil dilated to a greater extent when participants held more items in memory
- Participants reported fewer items correctly when they reported being in an 'off-task' attentional state
- Participants who experienced more variability in arousal (pretrial pupil diameter) performed worse on the task
- Results are consistent with the LC-NE account of individual differences in working memory capacity and attention control (Unsworth & Robison, 2017)